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ABSTRACT

Foreground removal is the most important step in detecting the large-scale redshifted
H i 21-cm signal. Modelling foreground spectra is challenging and is further compli-
cated by the chromatic response of the telescope. We present a multi-frequency angular
power spectrum(MAPS) estimator for use in a survey for redshifted H i 21-cm emission
from z ∼ 3.35, and demonstrate its ability to accurately characterize the foregrounds.
This survey will be carried out with the two wide-field interferometer modes of the
upgraded Ooty Radio Telescope, called the Ooty Wide Field Array(OWFA), at 326.5
MHz. We have tailored the two-visibility correlation for OWFA to estimate the MAPS
and test it with simulated foregrounds. In the process, we describe a software model
that encodes the geometry and the details of the telescope, and simulates a realistic
model for the bright radio sky. This article presents simulations which include the full
chromatic response of the telescope, in addition to the frequency dependence intrinsic
to the foregrounds. We find that the visibility correlation MAPS estimator recovers
the input angular power spectrum accurately, and that the instrument response to
the foregrounds dominates the systematic errors in the recovered foreground power
spectra.

Key words: instrumentation: interferometers; methods: data analysis, numeri-
cal, statistical; techniques: interferometric; cosmology: observations, diffuse radiation,
large-scale structure of Universe

1 INTRODUCTION

Measuring the post-reionisation neutral hydrogen power
spectrum provides a new probe of the large scale structure of
the universe (Bharadwaj et al. 2001; Wyithe & Loeb 2009;
Pritchard & Loeb 2012), and would allow constraining many
important cosmological parameters (Wyithe et al. 2008;
Loeb & Wyithe 2008; Bharadwaj et al. 2009; Visbal et al.
2009; Chang et al. 2010; Seo et al. 2010; Bull et al. 2015;
Padmanabhan et al. 2015). The surge of interest in 21-
cm intensity mapping over the last decade stems from
the promise of constraining dark energy. The expansion of
the universe is thought to accelerate at late times due to
dark energy. The Baryon Acoustic Oscillation (BAO) has
been proposed as a standard ruler (Eisenstein 2005). Its
measurement at multiple redshifts can measure the rate
of expansion of the universe over cosmic time and hence

⋆ E-mail: vrmarthi@ncra.tifr.res.in

place constraints on dark energy (Wang 2006; Chang et al.
2008). More recently, 21-cm intensity mapping has gained
attention due to its potential to constrain the neutrino
masses (e.g. Pritchard & Pierpaoli 2008, 2009; Oyama et al.
2013; Villaescusa-Navarro et al. 2015). A number of post-
reionisation experiments are currently being planned: in-
terferometric experiments, like the Canadian Hydrogen
Intensity Mapping Experiment (CHIME; Bandura et al.
2014) and those with other telescopes such as the Ooty
Wide Field Array (OWFA;Prasad & Subrahmanya 2011;
Subrahmanya et al. 2017), the Baryon Acoustic Oscillation
Broadband and Broad Beam Array (BAOBAB; Pober et al.
2013a), and the Tianlai Cylinder Radio Telescope (CRT;
Chen 2011), as well as single dish intensity mapping experi-
ments like BINGO (Battye et al. 2016) and GBT-HIM (e.g.
Chang et al. 2010). The goals of these experiments are sim-
ilar - to constrain cosmological parameters through a mea-
surement of the power spectrum of the redshifted H i 21-cm
signal and to measure the BAO peak through a measure-
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ment of the power spectrum of the density fluctuations. This
article discusses the OWFA effort.

Ali & Bharadwaj (2014) have presented calculations of
both the H i signal and the foregrounds expected for OWFA,
considering the diffuse Galactic synchrotron and the extra-
galactic radio source contribution. Bharadwaj et al. (2015)
present Fisher-matrix forecasts of the H i signal for OWFA,
where they predict that a 5σ detection of the amplitude of
H i signal is achievable in ∼ 150 hours of integration, assum-
ing that foregrounds have been completely removed.

The 39-MHz observing band at OWFA, centred at 326.5
MHz, provides access to the H i signal from a window of
∆z ∼ 0.52 around z ∼ 3.35. A statistical detection of
the post-reionisation signal is fraught with challenges very
similar to those in low frequency radio epoch of reionisa-
tion (EoR) experiments, the most formidable of which is
dealing foreground emission (see e.g. Furlanetto et al. 2006;
Ali et al. 2008). Foregrounds are important at least for two
reasons: (1) the astrophysical foregrounds are many orders
of magnitude brighter than the cosmological signal, and (2)
foregrounds interact with the instrument to produce spec-
tral signatures that can contaminate the H i signal (see e.g.
Vedantham et al. 2012; Thyagarajan et al. 2015a).

At least two classes of techniques to treat foregrounds
exist. In foreground removal methods, the foregrounds
are mathematically modelled as spectrally smooth func-
tions and subtracted in the image space (Morales et al.
2006; Jelić et al. 2008; Bowman et al. 2009; Liu et al.
2009b; Chapman et al. 2012) or from the visibilities
(McQuinn et al. 2006; Gleser et al. 2008; Liu et al. 2009a;
Petrovic & Oh 2011). Ghosh et al. (2011a,b) fit smooth
functions to the multi-frequency angular power spectrum at
each multipole to subtract the foregrounds, exploiting the
fact that the H i signal decorrelates more rapidly with fre-
quency (Bharadwaj & Sethi 2001; Bharadwaj & Ali 2005)
than the foregrounds. Foreground isolation, on the other
hand (Datta et al. 2010; Morales et al. 2012; Parsons et al.
2012; Vedantham et al. 2012; Thyagarajan et al. 2013;
Liu et al. 2014), uses only those regions of the observed
k−space that can be identified as being less affected by the
foreground emission.

Although it is known that the major foreground com-
ponents all have smooth spectral behaviour, allowing them
to be distinguished from the cosmological 21-cm signal, the
telescope’s chromatic response introduces spectral features
in the foreground contribution to the observed signal. These
effects, the details of which are telescope-specific, pose a se-
rious challenge for any foreground removal technique. Sim-
ulations that incorporate a detailed frequency dependent
telescope model are crucial to quantifying these effects as
well validating any foreground removal technique. In this
paper we present a software emulator that describes a chro-
matic model for OWFA. The emulator is used in conjunc-
tion with a foreground sky model to predict the foregrounds
expected in observations with OWFA. The three dimen-
sional power spectrum P (k) of the redshifted 21-cm bright-
ness temperature fluctuations (e.g. Bharadwaj & Ali 2005)
is well suited to quantifying the H i signal which, to a good
approximation, may be assumed statistically homogeneous
in the three dimensional space spanned by the two angu-
lar coordinates and the frequency axis. This assumption,
however, is not valid for the foregrounds, where the statis-

tics are quite different in the angular and frequency direc-
tions. The issue is further complicated by the telescope’s
chromatic response. The Fourier modes k are no longer the
ideal basis, and the power spectrum P (k) is no longer the
obvious choice to quantify the statistical properties of the
measured sky signal. In this paper we propose using the cor-
relations between the visibilities to quantify the statistical
properties of the measured sky signal. The relation between
the visibility correlations and the power spectrum P (k) has
been studied in several earlier works (Bharadwaj & Sethi
2001; Bharadwaj & Ali 2005; Ali & Bharadwaj 2014) and is
well understood. The multi-frequency angular power spec-
trum (MAPS; Datta, Choudhury & Bharadwaj 2007) pro-
vides a technique to jointly characterize the angular and fre-
quency dependence of the observed sky signal. This is very
closely related to the visibility correlations (Ali et al. 2008;
Ali & Bharadwaj 2014), and we also use this to quantify
our simulated foreground predictions for OWFA. In what
follows we distinguish between three different kinds of visi-
bilities, viz.: (a) the model visibilities, which are the Fourier
transform of the primary beam-weighted sky brightness dis-
tribution for the array geometry under consideration, (b) the
measured visibilities, which are the actual measurements of
the beam-weighted sky made by the array, corrupted by the
complex antenna gains and (c) the true visibilities, which are
obtained from the measured visibilities after the process of
calibration, which is a noisy version of the model visibilities.

To begin with, we introduce OWFA, the instrument, in
Section 2, and describe the emulator in Section 3. In Sec-
tion 4 we introduce the foreground components and describe
the steps in the simulation of the foreground fields. The
model visibilities are obtained for the simulated foregrounds,
given the instrument description. Section 5 introduces the
multi-frequency angular power spectrum (MAPS) estima-
tor and its construction from the visibility correlation for
OWFA, which we use to estimate the angular power spec-
trum from the true visibilities. Section 6 presents the results
of the simulation and power spectrum estimation. We follow
them up with a discussion of the properties of the estimator
in Section 7.

2 THE OOTY WIDE FIELD ARRAY - OWFA

The Ooty Radio Telescope (ORT; Swarup et al. 1971) is lo-
cated in the Nilgiri Hills in the Indian peninsula, approxi-
mately at 11◦N at an altitude of ∼ 8, 000 ft. The telescope,
operating at 326.5MHz, has an offset-parabolic cylindrical
reflector whose aperture is a 530m long and 30m wide rect-
angle as shown in Figure 2. The feed consists of 1056 dipoles,
each 0.5λ long, all arranged end to end along the length of
the line focus of the reflector. The telescope is located on a
hill that is roughly sloped 11◦ North-South, which equals the
latitude of the station. Figure 1 shows a part of the ORT.
Effectively, the axis of the cylinder is parallel to the earth’s
rotation axis, making it equatorially mounted. The telescope
is steerable in the East-West direction mechanically by ro-
tating the cylinder about its axis, allowing continuous track-
ing of a source on the sky from rise to set. The telescope’s
response is steered electronically in the North-South direc-
tion by switching the phases of the dipoles through an ana-
log phase-switching network. Here we consider observations

MNRAS 000, 1–16 (2017)



Foreground predictions for OWFA 3

Figure 1. (colour online) A photograph of the Ooty Radio Tele-
scope (ORT) on the sloping hill, showing four of the 22 parabolic
frames. The left side of the picture is North and the right is South.

pointed towards the phase center (α, δ) = (α0, δ0), denoted
by the unit vector m (Figure 2).

In the legacy ORT system the signals from the dipoles
are combined in a passive combiner network tree, only a part
of which is shown Figure 3. The signals from 24 successive
dipoles are combined hierarchically in a series of 4-way, 2-
way and 3-way combiners. The output at this stage is called
a half-module. Two half-module outputs are again combined
in a 2-way combiner: therefore the 1056 dipoles are grouped
into 22 modules of 48 dipoles each. The 22 modules are
split into 11 Northern and 11 Southern modules, each half
is used to generate 11 phase-shifted beams, each pointing at
a different direction, and 1 total intensity beam. The beams
obtained from the Northern and Southern modules are cor-
related with each other to get rid of systematics. The legacy
beam-former mode of the ORT system provides twelve si-
multaneous beams on the sky.

The ORT is presently undergoing a major up-
grade to operate as a programmable interferometer
(Subrahmanya et al. 2017). The upgrade will enable two
concurrent but independent interferometer modes, besides
retaining the workhorse beam-former mode. The two con-
current modes are:

(i) P-II : the signal is tapped after the 4-way combiner -
the second stage of the combiner network (Figure 3) - to give
a field-of-view (FoV) of 1.8◦×27◦ EW×NS and a bandwidth
of ∼ 39MHz. It would operate as a linear array of 264 equi-
spaced antennas, giving ∼ 35, 000 baselines.

(ii) P-I: every group of six adjacent 4-way combiner out-
puts are summed in phase in the software correlator system.
This is equivalent to the signal being tapped at every half-
module(24 dipoles), giving a FoV of 1.8◦×4.5◦ EW×NS, and
∼ 39MHz bandwidth. It would operate as an independent
linear array of 40 equi-spaced antennas, giving 780 baselines.

The RF signals tapped at the 4-way combiner (Figure 3)
are digitised in the field and the signals are transported to
the central building on optical fibre. The signals undergo two
levels of pooling and a protocol conversion before arriving
in a high-performance cluster (HPC) that will correlate the
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Figure 2. This shows a diagram of the 30m × 530m aperture of
the ORT parabolic cylinder whose axis is alighned with the N-S
direction. The smaller rectangles, one of which is shaded, depcit
the apertures of the individual OWFA antennas which are linearly
arranged along the length of the ORT cylinder. The unit vector
n denotes an arbitrary direction with coordinates (α, δ) on the
celestial sphere. Our Cartesian coordinate system which is tied to
the telescope has the z-axis in the N-S direction, and the x-axis
along the normal to the aperture pointing towards the position
(α0, 0) on the celestial equator. The unit vector m denotes the

phase center (α0, δ0) which can be steered electronically in the
N-S direction.

signals to obtain the visibilities. The P-I system mentioned
above will run in parallel with the P-II system within the
HPC.

OWFA will operate as an array of NA antennas ar-
ranged linearly along the length of the 530m ORT cylin-
der as shown in Figure 2. Each OWFA antenna has a b× d
rectangular aperture, where b = 30m is the width of the
parabolic reflector and d is the length of the antenna which
is different for P-I and P-II. d is also the spacing between
an adjacent antenna pair. The array parameters are sum-
marized in Table 1.

The regular spacing of the antennas results in a large
fraction of the NAC2

1 baselines being redundant, and there
are only NA − 1 unique baselines. We can express these
unique baselines in terms of the smallest baselineU 1 = dν/c
as

U n = nU 1 with 1 6 n 6 NA − 1 . (1)

Each baseline U n has a redundancy factor of NA − n.
OWFA is conveniently described using a right-handed

Cartesian coordinate system tied to the telescope as shown
in Figure 2. The z-axis is along the N-S direction which
is parallel to the axis of the parabolic cylinder, and the x-
axis is normal to the telescope’s aperture. In this coordinate
system the baseline vectors are all along the z-axis and we
have

U n = |Un|z . (2)

1 nCr is defined as n!
(n−r)!r!

MNRAS 000, 1–16 (2017)
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Figure 3. The signal paths from the dipoles to the digitiser of OWFA: each dipole has an LNA and a phase shifter for setting the
declination. The output of the 2-way combiner proceeds to the legacy ORT receiver system. The legacy ORT receiver system is a
beam-former network capable of producing twelve simultaneous beams on the sky.

The unit vector n towards an arbitrary direction (α, δ) on
the celestial sphere can be expressed as

n = sin(δ) z + cos(δ)[cos(α− α0) x + sin(α− α0)y ] . (3)

where x , y and z respectively denote the unit vectors along
the x-, y- and z-axes. The unit vector m towards the phase
center (α0, δ0) can be represented as

m = sin(δo) z + cos(δ0)x . (4)

Observations at 326.5 MHz relate to H i at z = 3.35,
which is at a comoving distance of r = 6.84Gpc. This re-
lates each baseline U to k⊥ = 2π|U |

r
which is the compo-

nent of a 3D wave vector k perpendicular to m . This sets
the range kmin

⊥ and kmax
⊥ that will be probed by OWFA

(Ali & Bharadwaj 2014). Since OWFA is one-dimensional,
it only probes k⊥ along the length of the interferometer.
We also have r′ = |dr/dν| = 11.5MpcMHz−1 which sets
the comoving interval L = r′ Bbw spanned by Bbw the sys-
tem bandwidth of OWFA. This sets kmin

‖ = 2π
r′ Bbw

and

kmax
‖ = π

r′ (∆ν)
where ∆ν is the channel width (frequency

resolution) and k‖ is the component of k parallel to m .
Table 1 summarizes the important parameters of the two
interferometer modes, assuming the WMAP 9-year results
for the cosmological parameters (Hinshaw et al. 2013).

3 A SOFTWARE EMULATOR FOR OWFA

In this Section, we will describe a software emulator for
OWFA that we subsequently use to make foreground pre-
dictions. The emulator (Prowess; Marthi 2017) was written
(1) to simulate the observed radio sky at 327 MHz, (2) to
provide a pipeline to simulate visibilities, introduce extrin-
sic systematics, study intrinsic systematics and allow us to
test calibration schemes (see Marthi & Chengalur 2014) and

Table 1. Parameters of OWFA. OWFA is a one-dimensional in-
terferometer; the values for k pertain only to the north-south
extent of the array elements.

Parameter P-I P-II

Antennas 40 264
Total baselines 780 34716
Unique baselines 39 263
Shortest baseline 11.5 m 1.92 m
Longest baseline 448.5 m 505.0 m
Central frequency 326.5 MHz 326.5 MHz
Bandwidth 39 MHz 39 MHz

Spectral resolution 125 kHz 125 kHz
Aperture (b × d) 30× 11.5 m2 30× 1.97 m2

FoV at δ = 0◦ 1.8◦ × 4.5◦ 1.8◦ × 27◦

Resolution 0.1◦ sec δ0 × 1.8◦ 0.1◦ sec δ0 × 1.8◦

kmin
⊥ 1.1× 10−2 Mpc−1 2.0× 10−3 Mpc−1

kmax
⊥ 4.6× 10−1 Mpc−1 5.2× 10−1 Mpc−1

kmin
‖

1.4× 10−2 Mpc−1 1.4× 10−2 Mpc−1

kmax
‖

4.6 Mpc−1 4.6 Mpc−1

detection strategies even as the telescope undergoes an up-
grade, (3) to prepare a science-ready observatory data anal-
ysis software pipeline in time for first light. For the purpose
of this article, only the first and second items are relevant.
We describe Prowess2 and some of the details of its de-
sign briefly in this section. It is important to note that the
telescope model incorporated in the emulator includes the
chromatic effects associated with the primary beam and the
baselines.

2 Prowess is available at https://github.com/vrmarthi/prowess

MNRAS 000, 1–16 (2017)
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Figure 4. (colour online) The aperture arrangement for OWFA in real and baseline space.

3.1 Visibilities

The visibilities M (U ) are the Fourier transform of the prod-
uct of the specific intensity distribution on the sky I(n , ν)
and the telescope’s primary beam pattern A(∆n , ν) where
∆n = n − m (Figure 2). The visibilities can be calculated
as

M (U ) =

∫

dΩn I(n , ν)A(∆n , ν) e−2πiU ·∆n (5)

where the solid angle integral is over the entire celestial
hemisphere.

Here A(∆n , ν) is the primary beam power pattern of
OWFA, modelled as a two-dimensional sinc-squared func-
tion

A(∆n , ν) = sinc2
(

πbν∆ny

c

)

sinc2
(

πdν∆nz

c

)

(6)

where ∆ny and ∆nz are respectively the y and z compo-
nents of ∆n . The primary beam pattern here is taken to
be the diffraction pattern of rectangular aperture of dimen-
sions b × d, the values of b and d for OWFA are given in
Table 1. This form of the primary beam has been assumed
as it likely to lead to larger systematics because of its high
sidelobe levels and is hence conservative. In reality, the ta-
pered east-west illumination of the aperture results in an
approximately truncated Gaussian beam. Prowess is capa-
ble of handling any user-defined primary beam. Figure 4(a)
shows the aperture arrangement and Figure 4(b) shows the
P-I primary beam pattern as a function of the celestial co-
ordinates α and δ for a pointing towards (α0, δ0) = (0, 0).

Note that in this co-ordinate system the phase factor
which is the argument of the exponent in equation (5)

2π iU ·∆n = 2π i |U |[sin(δ)− sin(δ0)] (7)

depends only on the baseline length and the declinations,
reflecting the 1D geometry of OWFA.

3.2 Overview of the software pipeline

We begin with a geometric description of the array in an
input Antenna Definition file. Since the telescope is equato-
rially mounted, the baseline co-ordinates remain stationary
as the antennas track the pointing coordinates on the sky.
The baseline vectors are obtained from the physical antenna

separations defined at the central frequency but scaled ap-
propriately at each channel when computing the visibilities.

d |a−b| = x a − x b, U |a−b| = d |a−b|
ν

c
(8)

It is worth noting that the chromatic response of the inter-
ferometer enters the picture through equations (6) and (8)
which respectively capture the fact that the primary beam
pattern and the baseline distribution both vary with fre-
quency. Even for a perfectly achromatic source, the chro-
matic response of the interferometer will introduce a fre-
quency dependent structure in the measured visibilities.

The pixel sizes in all our simulated maps and the pri-
mary beam are ∼ 1′ × 1′. The maps and the primary beam
are all 2048× 2048 pixels wide, spanning an angular extent
of ∼ 38◦ in each dimension. In this paper, we will focus only
on P-I, where the antenna primary beam full width at half
maximum (FWHM) is 1.8◦ × 4.5◦.

The brightness distribution for the diffuse foreground
component in our simulations is obtained as a random re-
alisation of its power spectrum (see Section 4). The specific
intensities I(np, ν) of the pixelized sky map are converted
to flux densities by scaling with the appropriate solid angle

S(np, ν) = I(np, ν)∆Ω , (9)

the index p here refers to the NP pixels in the map. The ex-
tragalactic point source foreground is obtained as a random
realisation of its power spectrum and obeying the differen-
tial source count relation (see Section 4). This results in a
set of NS discrete extragalactic radio sources identified by
their respective positions ns and flux densities S(ns, ν).

We note that similar simulations of both the instru-
ment and foregrounds have been carried out for CHIME
(Shaw et al. 2014) and MWA (Thyagarajan et al. 2015a).
In contrast to the above full sky foreground simulations we
emphasize that for P-I of OWFA, where the primary beam is
much smaller in comparison, a full sky treatment of the fore-
grounds is not necessary. However, unlike the small FoV LO-
FAR foreground simulations (Jelić et al. 2008), we do con-
sider a FoV much further out than the primary. For P-II,
with a primary FoV of 0.5 rad, wide-field effects become im-
portant, and they will be considered separately for the P-II
forecasts.

The model visibilities M (U ) for the non-redundant set

MNRAS 000, 1–16 (2017)
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of baselines are obtained using a discretised version of equa-
tion (5):

M (U ) =
∑

b

S(nb, ν) A(∆nb, ν) e
−i2πU ·∆nb . (10)

The sum denoted here by the index b includes the NP pixels
of the diffuse foreground as well as the NS discrete extra-
galactic sources.

The visibility V measured by a baseline with antennas
a and b depends on the model visibility for that particular
spacing, as well the element gains:

V (U ab) = ga g∗b M
(

U |a−b|

)

+N (U ab) (11)

where ga and gb are the complex antenna gains (which could
also be frequency dependent) and N is Gaussian random
noise equivalent to the system temperature Tsys.

The antenna gains and the true (calibrated) visibili-
ties are estimated from the measured visibilities by employ-
ing the non-linear least squares minimisation algorithm de-
scribed in Marthi & Chengalur (2014). Due to the enormous
redundancy of the measurements, the highly overdetermined
system of equations enables simultaneously solving for both
the gains and the true visibilities. This is interesting particu-
larly in light of studies regarding the limitations introduced
by calibration based on an incomplete model of the sky, as
is routinely employed in interferometry Patil et al. (2016).
The real and imaginary part of the noise N in equation (11)
each has a RMS fluctuation (Thompson et al. 2008)

σab =

√
2kBTsys

ηA
√
∆ν∆t

(12)

per channel, where kB is the Boltzmann constant, η is the
aperture efficiency, A = b × d is the aperture area, ∆ν the
channel width and ∆t the integration time. The foreground
maps give the flux in Jy units at every pixel, therefore the
Fourier sum directly produces the model visibilities in Jy
units. The flowchart in Figure 7 of Marthi (2017) gives an
overview of the part of the emulator used to obtain the vis-
ibilities. As mentioned earlier, the emulator fully incorpo-
rates the chromatic response of the instrument. The base-
lines (eq. 8), the primary beam (eq. 6) and the sky vary
with frequency. These quantities were calculated separately
at each frequency and used in equation (10) to calculate the
visibilities. The spectral variation of the sky is discussed in
Section 4. The pixel solid angle ∆Ω in equation ( 9) is held
fixed across the band. In our simulations of the foregrounds,
the sky is sampled at a much higher resolution than the
resolution element of OWFA. The simulated visibilities, the
primary beam and the foreground maps are written to disk
in the Flexible Image Transport System (FITS; Wells et al.
1981) format. The visibility records are written to UVFITS
files at one-second interval.

In Prowess, the observing band is centred at 326.5
MHz with a bandwidth of ∼ 39 MHz split into 312 chan-
nels in the simulations. The frequency resolution is thus
125 kHz per channel. Based on our understanding of the
distribution of the neutral gas around the redshift of z ∼
3.35, the H i signal at two redshifted frequencies, sepa-
rated by more than ∆ν ∼ 1 MHz, is expected to decorre-
late rapidly (Bharadwaj & Ali 2005; Bharadwaj et al. 2009;
Chatterjee et al. 2017). This means that with a channel res-
olution of 125 kHz, the H i signal correlation is adequately

sampled over the 1-MHz correlation interval. In reality, the
channel resolution is likely to be much finer (∼ 50kHz), with
about 800 channels across the 39-MHz band. This is useful
for the identification and excision of narrow line radio fre-
quency interference. Beyond the need to handle RFI, there
is no incentive to retaining the visibilities at this resolution.
Eventually, we may smooth the data to a resolution of 125
kHz, keeping in mind the decorrelation bandwidth of the H i

signal. Prowess itself is indeed capable of running at any
frequency resolution, including the actual final configuration
of the P-I and P-II systems. But the 125-kHz resolution used
in the simulations allows for rapid processing, especially if
they are to be run repetitively for a wide range of different
parameters.

4 THE FOREGROUNDS

The most dominant contributors to the foregrounds are
the diffuse synchrotron emission from our Galaxy and the
extragalactic radio sources (see e.g. Di Matteo et al. 2002;
Santos et al. 2005; Furlanetto et al. 2006; Ali et al. 2008).
Although some choice is available in the selection of a rea-
sonably cold region of the Galaxy through which to ob-
serve the distant universe, emission from extragalactic radio
sources is ubiquitous. At different angular scales, either of
the two dominates: at the very large scales, ℓ . 100, the
Galactic synchrotron emission contributes more to the fore-
ground budget. At smaller scales, there is a gradual tran-
sition to the flux from extragalactic sources. Galactic syn-
chrotron is likely to dominate the emission at the largest
angular scales observable by P-II at the OWFA, and likely
at the first few baselines of P-I (Ali & Bharadwaj 2014) at
higher declinations. Since the largest contribution to the H i

signal is expected to come from the largest angular scales
(Chatterjee et al. 2017) we would have access to, the large
scale emission from the diffuse foreground assumes impor-
tance.

4.1 The Diffuse Galactic Foreground

Diffuse synchrotron emission from the Galaxy has been stud-
ied extensively, both within the context of statistical H i ex-
periments (Jelić et al. 2008; Bernardi et al. 2009; Jelić et al.
2014) as well as in their own right (e.g. Haslam et al.
1981, 1982). La Porta et al. (2008) determine the power
spectrum of the diffuse synchrotron emission at scales
larger than 0.5o from the 408-MHz Haslam total inten-
sity maps, where they find that the index of the power
law γ varies between 2.6 and 3.0. Similarly, there are mea-
surements at scales smaller than 0.5o from the WSRT
(Bernardi et al. 2009, 2010), GMRT(Ghosh et al. 2012) and
LOFAR (Iacobelli et al. 2013).

We assume that the fluctuations in the diffuse Galac-
tic Synchrotron radiation are statistically homogeneous and
isotropic, described by a Gaussian random field whose sta-
tistical properties are completely specified by the angular
power spectrum. We further assume that the input model
angular power spectrum CM

ℓ (ν) is well described by a single
power law in the entire range of angular scales of our interest
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(a) Simulated map (b) Angular Power Spectrum (c) Angular Power Spectrum with
primary beam

Figure 5. (colour online) (a) shows a particular realization of the simulated brightness temperature map δT (θ, ν) in (α, δ) coordinates
for the nominal frequency of ν = 326.5MHz.In (b) the black points show the angular power spectrum recovered from the simulated map
shown in (a), the input model angular power spectrum CM

ℓ (ν), is shown by the curve in red. The shaded region shows the multipole
range ℓmin− ℓmax accessible to OWFA. (c) shows the angular power spectrum recovered by applying equation (16) to the image obtained
for a single realisation by multiplying the simulated map (a) with the primary beam patter shown in Figure 4(b).

(e.g. Santos et al. 2005; Ali et al. 2008):

CM
ℓ (ν) = Aν0

(ν0
ν

)2α
(

1000

ℓ

)γ

(13)

where Aν0 is a constant - the amplitude that can be de-
termined observationally at ν0 (here at ℓ = 1000), α is the
spectral index and γ is the index of the spatial power.

A map of the diffuse synchrotron radiation can be ob-
tained as a realization of a Gaussian random field whose
power is distributed in the angular scales described by
eqn (13). A detailed description of how to generate such
a realization can be found in Choudhuri et al. (2014), but
we give a brief summary here for completeness. Consider
the model angular power spectrum given in equation (13).
We take A150 = 513 mK2, which is the amplitude of the
angular power spectrum measured at 150 MHz with the
GMRT (Ghosh et al. 2012). For the other paramters, we
take α = 2.52 (Rogers & Bowman 2008) and γ = 2.34
(Ghosh et al. 2012). The spectral index α scales the ob-
served brightness temperature from a 150-MHz observation
to 326.5 MHz as well as imparts an in-band spectral shape
to the diffuse emission.

The foreground simulations have been carried out un-
der the flat sky approximation with n = m + θ, where θ

is a 2D vector on the plane of the sky. We use U to de-
note the Fourier modes corresponding to θ, and these are
related to the angular multipole ℓ as ℓ = 2π|U|. The Fourier
components of the brightness temperature fluctuations are
generated on a grid through

∆T̃ (U , ν) =

√

ΩCM
ℓ (ν)

2
(x+ iy) , (14)

where Ω is the total solid angle of the simulated field, and
x and y are independent Gaussian random variables with
zero mean and unit variance. The map of the brightness

temperature fluctuations δT (θ, ν), or equivalently the spe-
cific intensity fluctuations δI(n , ν), is obtained through a
Fourier inversion. Figure 5(a) shows a single realization of
the simulated brightness temperature map in δT (θ, ν) in
(α, δ) coordinates, for which the recovered angular power
spectrum Cℓ(ν) is shown in Figure 5(b) in comparison with
the input model CM

ℓ (ν) used to obtain the random real-
ization. The simulated map is multiplied with the OWFA
primary beam pattern (Figure 4(b)) to obtain δTB(θ, ν) =
δT (θ, ν) A(θ, ν) which is used to calculate the model visi-
bilities (equation 10). Here ∆T̃B(U ), which is the Fourier
transform of δTB(θ, ν), is related to the angular power spec-
trum Cℓ(ν) as

〈|∆T̃B(U )|2〉 =
∫

d2U ′|Ã(U −U
′)|2C

ℓ
′ (ν) (15)

where ℓ
′

= 2π|U ′| and Ã(U ) is the Fourier transform of the
primary beam A(θ, ν). Under the assumption that Cℓ(ν)
does not change much within the width of the function
|Ã(U −U ′)|2, the relation between ∆T̃B(U ) and the angu-
lar power spectrum Cℓ(ν) can be (Ali & Bharadwaj 2014)
approximated as

〈|∆T̃B(U )|2〉 =
[
∫

d2U ′|Ã(U ′)|2
]

Cℓ(ν) (16)

which allows us also to estimate Cℓ(ν) from ∆T̃B(U , ν) or,
equivalently, from the model visibilities M (U ) . Figure 5(c)
shows the comparison between the angular power spectrum
Cℓ(ν) estimated using equation (16) and the input model
CM

ℓ (ν). The recovered angular power spectrum is in good
agreement with the input model for ℓ > 100, whereas the
convolution with the primary beam (equation 15) is impor-
tant at smaller ℓ. The fact that |M (U )|2 directly gives an
estimate of Cℓ(ν) for most of the ℓ range shown in Fig-
ure 5(c) means that the correlation between the visibilities
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(a) Simulated map (b) Angular Power Spectrum (c) Angular Power Spectrum with
primary beam

Figure 6. (colour online) (a) shows a zoomed in view of a single realization of the simulated brightness temperature map δT (θ, ν) in
(α, δ) coordinates for the nominal frequency of ν = 326.5MHz. In (b) the black points show the angular power spectrum recovered from
the simulated map shown in (a), the input model angular power spectrum CM

ℓ (ν), is shown by the curve in red. The shaded region shows
the multipole range ℓmin − ℓmax accessible to OWFA. (c) shows the angular power spectrum recovered by applying equation (16) to the
image obtained for a single realisation by multiplying the simulated map (a) with the primary beam pattern shown in Figure 4(b).The
approximation is valid throughout the entire ℓ range, except at the smallest multipoles.

measured at OWFA can be used directly to estimate the
angular power spectrum of the sky signal, an issue that we
explore in detail later.

The values of the three parameters α, A150 and γ have
been held constant in our simulations. In reality the spec-
tral index α can vary along different lines of sight, and the
amplitude A150 and γ is the index of the spatial power can
have different values in different patches of the sky (e.g.
La Porta et al. 2008). These variations will introduce addi-
tional angular and frequency structures as compared to the
predictions of our simulations.

4.2 Extragalactic radio sources

The dominant emission from the 326.5-MHz sky at most of
the angular scales of our interest is expected to be from
the extragalactc point sources (Ali & Bharadwaj 2014).
Wieringa (1991) has measured the source counts at 325
MHz with the WSRT down to ∼ 4 mJy. More recently,
Sirothia et al. (2009) have measured the source counts in
the ELAIS N1 field at 325 MHz with the GMRT, the deep-
est till date. Ali & Bharadwaj (2014) have estimated that at
most of the angular scales of P-II and at all scales of P-I, the
extragalactic point source contribution is likely to dominate
when observing at high galactic latitudes. The extragalac-
tic radio source power spectrum has a flat Poisson part and
a clustered part with a non-zero slope (Cress et al. 1996;
Condon 2007; Owen & Morrison 2008; Vernstrom 2015).

Simulating extragalactic radio sources, most of which
are unresolved at the resolution of OWFA, is more involved
than the straightforward Fourier inversion of a power spec-
trum of the diffuse foreground. Details of the method used
here can be found in González-Nuevo et al. (2005) but we
summarize it here for completeness. Let n̄ be the mean num-

ber density of sources per pixel. Note that we have n̄ > 1 for
a confusion limited map. We begin with a random Poisson
field of mean source density n̄, for which the density contrast
is defined as δ(θ) = [n(θ)−n̄]/n̄, and its Fourier transform is
denoted using ∆(U ). Let its angular power spectrum of δ(θ)
be denoted by CP

ℓ , which can be calculated from ∆(U ). We
modify CP

ℓ by the clustering angular power spectrum Ccl
ℓ :

accordingly the Fourier transform of the density contrast is
modified as

∆′(U ) = ∆(U )

√

CP
ℓ + Ccl

ℓ

CP
ℓ

(17)

The modified density contrast spectrum ∆′(U ) is reverse
transformed to give the modified density contrast function
δ′(θ). Finally, the modified pixel source density is given
by n′(θ) = ñ[1 + δ′(θ)]. The input power spectra for the
Poisson part and the clustered part are respectively(from
Ali & Bharadwaj 2014),

CP
ℓ =

(

∂B

∂T

)−2 ∫ Sc

0

S2 dN

dS
dS (18)

and

Ccl
ℓ = 3.3×10−5 ·

(

∂B

∂T

)−2 [∫ Sc

0

S2 dN

dS
dS

](

1000

ℓ

)γ

(19)

The integrals have been computed from a polynomial fit
to the source counts from Wieringa (1991). The simulated
map represents the true source distribution in the sky as no
bright sources are assumed to have been subtracted, equiv-
alent to an infinite cutoff flux. However, we impose a cutoff
of 30 Jy in the numerical integration: this is a reasonably
good approximation to an infinite cutoff flux, as the num-
ber of sources beyond ∼ 3 Jy falls very sharply, and this
behaviour is well captured by the polynomial approxima-
tion to the differential source counts. The clustered part
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has a power law index of γ = 0.9 (Cress et al. 1996). The
mean values are CP

1000 = 1580 mK2 and Ccl
1000 = 444 mK2.

We now populate the pixels with radio sources according
to the observed differential source count relation, drawing
from the distribution described by the polynomial obtained
for the fit. The spectral indices for the point source fluxes
have been assigned randomly, drawing from a Gaussian fit
to the distribution centered at α = 0.7 with a dispersion
of σα = 0.25 (Sirothia et al. 2009) and their channel-wise
fluxes scaled accordingly. The angular resolution of these
simulated maps (∼ 1′ × 1′) is equal to the 325-MHz WSRT
resolution of Wieringa (1991), much finer than the OWFA
resolution of 6′. Figure 6(a) shows a single realization of the
simulated brightness temperature map in δT (θ, ν) in (α, δ)
coordinates. The angular power spectrum of the single ran-
dom realization Cℓ(ν), shown in Figure 6(b), is seen to be
in good agreement with the input model CM

ℓ (ν) except at
the smallest multipoles. Figure 6(c) shows the comparison
between the angular power spectrum Cℓ(ν) estimated using
equation (16) and the input model CM

ℓ (ν).
The confusion limit for OWFA is 175 mJy

(Ali & Bharadwaj 2014); however, we do not propose
to identify and subtract sources from the one-dimensional
images made using the OWFA itself. Instead, a model
for the sky obtained from deep GMRT imaging could,
for example, be used to subtract the contribution to the
visibility from the extragalactic radio sources. Alternatively,
the model visibilties upto 18 mJy (the 5σ lmit) could just as
well be obtained from the shallower Westerbork Northern
Sky Survey (WENSS; Rengelink et al. 1997).

5 POWER SPECTRUM ESTIMATION

5.1 The two-visibility correlation as the MAPS

estimator

The issue here is to use the measured OWFA visibilities
V(U n) to estimate the statistics of the background sky sig-
nal. Before discussing the method of analysis, it is important
to note that the baseline U n corresponding to a fixed an-
tenna separation dn scales as U n = ν dn/c (equation 8)
with ν varying across the observing band. This renders it
difficult to use U n and νi as independent parameters to la-
bel the visibilities V(U n) that will be measured at OWFA.
For the purpose of analyzing the data we adopt the notation
whereU n = νc dn/c which does not vary with frequency but
is fixed at νc = 326.5MHz. In this notation we may inter-
pret U n and νi as independent parameters that label the
visibilities V(U n, νi).

The proposed method of analysis is here applied to sim-
ulated data which only contains the foreground components.
As described in the previous section, the foregrounds all have
simple power law frequency dependence in the models which
we have implemented here. The telescope’s chromatic re-
sponse (equations 6 and 8) , however, introduces additional
frequency dependence which we have attempted to capture
in the subsequent analysis.

The two point statistics or, equivalently the power spec-
trum of the sky signal, is entirely contained in the two visi-
bility correlation

S2(U n, νi;Um, νj) ≡ 〈V(U n, νi)V∗(Um, νj)〉 . (20)

where the angular brackets denote an ensemble average over
different random realisations of the sky signal.

In addition to the self-correlation (n = m) , the signal
in the adjacent baseline pairs (n = m±1) are correlated (see
Figure 4(c) and Ali & Bharadwaj 2014). Further, the cor-
relation is approximately a factor of four smaller compared
to the self correlation if we consider two adjacent baselines
(Bharadwaj et al. 2015). For the present analysis we con-
sider only the self-correlation, and we use the notation

S2(U n, νi, , νj) ≡ 〈V(U n, νi)V∗(U n, νj)〉 . (21)

The relation between S2 and the power spectrum P (k)
of H i is well understood (Bharadwaj & Sethi 2001;
Bharadwaj & Ali 2005; Ali & Bharadwaj 2014) and we do
not consider it here.

The multi-frequency angular power spectrum Cℓ(νi, νj)
(MAPS; Datta et al. 2007) which is defined through

〈∆T̃ (U , νi)∆T̃B(U
′

, νj)〉 = δ2D(U −U
′

)Cℓ(νi, νj) (22)

provides an useful tool to jointly characterize the angular
and frequency dependence of the statistical properties of the
sky signal. Here δ2D(U −U

′

) is the 2D Dirac delta function
and we have ℓ = 2π|U| in the flat sky approximation.

The model visibilities in equation 5 are related to the
brightness temperature fluctuations ∆T̃ (U , ν) as

M (U n, ν) =

(

∂B

∂T

)

ν

∫

d2U Ã(U n(ν/νc)−U , ν)∆T̃ (U , ν)

(23)

where
(

∂B
∂T

)

ν
is the conversion factor from brightness tem-

perature to specific intensity, and we have introduced a fac-
tor (ν/νc) in the argument of Ã to account for the fact that
U n is defined at νc. For the present analysis we assume that
the visibilities are perfectly calibrated and altogether ignore
the noise contribution. This leads to

S2(U n, νi, , νj) =

(

∂B

∂T

)

νi

(

∂B

∂T

)

νj

∫

d2U × (24)

Ã(U n(νi/νc)−U , νi)Ã
∗(U n(νj/νc)−U , νj)C2πU (νi, νj)

which relates the visibility correlation to the multi-frequency
angular power spectrum (MAPS). Note that it is possible
to estimate the visibility correlation S2(U n, νi, , νj) directly
from the measured visibilities, whereas Cℓ(νi, νj) quantifies
the intrinsic sky signal independent of any telescope. Equa-
tion (24) allows us to relate the statistics of the measured
visibilities to the intrinsic statistics of the sky signal. We see
that the telescope appears through a convolution in equa-
tion (24). It is, in principle, possible to determine Cℓ(νi, νj)
from the measured S2(U n, νi, , νj) by deconvolving the effect
of the telescope’s primary beam Ã, and we interchangeably
refer to S2(U n, νi, , νj) as the visibility correlation or the
MAPS estimator.

We now consider the restricted situation where νi =
νj , and discuss how it is possible to use the measured
S2(U n, νi, νj) to estimate Cℓ(ν) ≡ Cℓ(νi, νi). We have al-
ready seen in equation (14) that for a large part of the ℓ
range probed by OWFA it is possible to approximate the
convolution in equation (24) by a multiplicative factor . This
permits us to approximate S2(U n, νi, νj) as

S2(U n, ν, ν) = KνCℓn(ν) (25)
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where ℓn = 2π|U n| and Kν is defined as

Kν =

(

∂B

∂T

)2

ν

∫

d2U ′|Ã(U′)|2 , (26)

which is uniquely determined for a known primary beam. We
can use equation (25) to estimate Cℓ(ν) from the measured
visibility correlation.

Considering a fixed baseline U n, the visibility correla-
tion S2(U n, νi, νj) is (equation 24) a real valued symmet-
ric matrix of dimensions Nc × Nc where Nc is the num-
ber of frequency channels. Observations will yield such a
matrix for every available unique baseline U n. For OWFA
(Table 1) we have a limited number of such baselines all
of which are aligned with the N-S direction, allowing us
to label the baselines with just numbers Un instead of
vectors U n. Earlier studies (e.g. Bharadwaj & Sethi 2001;
Ali & Bharadwaj 2014) show that the H i signal contribu-
tion to S2(Un, νi, νj) can be modelled as S2(Un,∆νij) which
depends only on the frequency separation ∆νij = |νi−νj |. It
is further predicted that S2(Un,∆νij) has a maximum value
at ∆νij = 0, and decorrelates rapidly as the separation ∆νij
increases, with a value close to zero for large values of ∆νij
(see e.g. Chatterjee et al. 2017, for result from simulation).
S2(Un,∆ν) is predicted to be close to zero for ∆νij > 1MHz
on nearly all of the baselines that will be probed by P-I
of OWFA (Ali & Bharadwaj 2014). This essentially implies
that the H i signal is mainly localized near the diagonal ele-
ments of the visibility correlation matrix S2(U n, νi, νj), the
elements which are located far away from the diagonal are
expected to not have much of the H i signal. It is therefore
reasonably safe to assume that the matrix elements located
at a distance from the diagonal are entirely dominated by
the foregrounds with a negligible H i contribution.

In the current work we present preliminary results
where we explore the frequency dependence of S2(U n, νi, νj)
in order to assess the contribution to such effects from the
instrument itself. We note that an earlier version of the vis-
ibility correlation-based estimator presented here has been
applied to measure the foreground Cℓ in 150MHz GMRT
observations (Ali et al. 2008; Ghosh et al. 2012), and also
for foreground removal in 610MHz GMRT observations
(Ghosh et al. 2011a,b).

5.2 Computing the estimator

In practice, we would calibrate the observed visibilities mak-
ing use of the redundant spacings (e.g. Wieringa 1992;
Liu et al. 2010; Marthi & Chengalur 2014). In this simula-
tion we directly use the model visibilities, equivalent to the
observed visibilities having been already calibrated. For a
baseline U n and a frequency channel νi, let there be Nn

distinct measurements of the visibility V(a)(U n, νi) labelled
using a = 1, 2, ..., Nn. Note that each redundant spacing as
well as each time sample is a distinct measurement of the
visibility3. The Nn distinct measurements all measure the
same Fourier mode on the sky, given by the model visibili-
ties M(U n, νi). The system noise contribution N a (U n, ν)

3 This is true only when the telescope tracks the sky continuously.
We do not consider the drift-scan mode of observing in this article.
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Figure 7. (colour online) The red, blue, black and magenta
colours code respectively the declinations 0◦, 20◦, 40◦ and 60◦.
This figure shows the magnitude of the model visibilities for a sin-
gle realization of the sky, the emission from the larger scales being
picked up by the shortened baselines at increasing declination.

(equation 11), however, is different in each of these measure-
ments: its contribution to each visibility measurement is an
independent Gauusian random variable, and the different
visibility measurements can be added coherently (after cali-
bration) to improve the signal-to-noise ratio; this is a unique
feature of OWFA. Therefore, the sum

V̄(U n, νi) =
1

Nn

Nn
∑

a=1

V(a)(U n, νi) (27)

shows a baseline-dependent 1/
√
Nn noise behaviour.

We can, in principle, use V̄(U n, νi)V̄∗(U n, νj) to esti-
mate the visibility correlation S2(U n, νi, νj). The correla-
tion S2(U n, νi, νi), however, will pick up an extra, positive,
noise bias

∑Nn

a=1 |N a (U n, νi) |2/(Nn)
2 arising from the cor-

relation of a visibility with itself. It is possible to avoid this
noise bias (e.g. Begum et al. 2006; Choudhuri et al. 2016b)
by subtracting out the self correlation

V̄2(U n, νi) =
1

Nn

Nn
∑

a=1

|V(a)(U n, νi)|2 . (28)

We hence define our estimator S2 as

S2(U n, νi, νj) =
N2

n V̄(U n, νi)V̄∗(U n, νj)− δijNn V̄2(U n, νi)

N2
n − δij Nn

(29)

which is free from the noise bias arising from the correlation
of a measured visibility with itself.

6 RESULTS

6.1 Visibilities

The model visibilities are computed for a sky model that
consists of the sum of a realization of the diffuse foreground
and the extragalactic radio sources. The full U -range of the
OWFA is ∼ 0− 500λ at δ0 = 0◦. However, for fields at high
declinations, the range of U is compressed by the factor
cos δ0, where δ0 is the declination of the centre of the field.
The model visibilities for a single realization of the sky that
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includes both the diffuse emission and extragalactic radio
sources for four different declinations are shown in Figure 7.
The higher declinations allow for a compressed range of U ,
thereby accessing more of the extended emission at U <
100. However, the sensitivity reduces equally by cos δ0 due
to the smaller projected aperture.

6.2 The Foreground Power Spectrum

In this section we provide results for the visibility correla-
tion MAPS estimator. As a verification step, we start with a
noise-free simulation, and use the model visibilities directly:
the assumption of perfect calibration and absence of iono-
sphereic effects and RFI is implicit. The MAPS estimator
returns a matrix of the visibility correlation S2(U n, νi, νj)
as a function of the pair of frequencies at which it is com-
puted. Each panel (left to right) in Figure 8 is the matrix
(read top left to bottom right) S2(U n, νi, νj) for the OWFA
baselines n = 1, 16 and 32 respectively.

This observation is simulated for a declination of δ = 0◦

and includes the diffuse Galactic emission as well as the
point source contribution. The three panels of Figure 8 (left
to right), have different (decreasing) foreground amplitudes.
As discussed in Figure 9 of Ali & Bharadwaj (2014), the dif-
fuse Galactic emission is the dominant component at short-
est baseline as apparent in the left panel of the Figure 8. The
clustered point source component dominates at small angu-
lar scales or the larger baselines (U . 300) which can be
seen in the middle panel. The foreground amplitude right
panel where U ≃ 400, is dominated by the Poisson con-
tribution. The foregrounds appear to be quite smooth in
the νi − νj plane, suggesting that this could possibly be
used to separate the H i signal, which has a different signa-
ture in S2, from the foregrounds. Note that the foregrounds
exhibit a particularly smooth frequency dependence at the
smallest baseline (left panel), and the frequency variations
become progressively more rapid as we move to larger base-
lines. Much of the frequency structure seen in the central
and right panels is clearly not a function of the frequency
separation ∆ν = |νi − νj | alone, and these structures are
visible even at large ∆ν, or away from the diagonal. This
distinction between the foregrounds and the H i signal leads
to separable features between the foregrounds and H i in the
k-space.

We next use the diagonal elements S2(U n, νi, νi) of the
measured MAPS to estimate the angular power spectrum
Cℓn(νi, νj) of the sky signal using equation (25). Figure 9(a)
shows Cℓ(ν) recovered from two simulated realisations of the
diffuse Galactic foregrounds. The solid line is the input ana-
lytical angular power spectrum and the points represent the
recovered angular power spectrum for a single realisation.
Similarly, Figure 9(b) shows the recovered angular power
spectrum for the extragalactic point sources, where the solid
line is the input angular power spectrum, which is the sum of
the Poisson and the clustered contributions. We see that the
recovered angular power spectrum is in excellent agreement
with the input model for the entire ℓ range shown in the
figure. In both cases, the dashed line represents the model
used to obtain a random realization, and serve only as a
visual aid. We reiterate that the results are shown here for
a noiseless simulation. The MAPS estimator, in addition,
is unbiased as it avoids the self-noise contribution through

equation (29). In a future article, we will explore apply-
ing the tapered gridded estimator (TGE; Choudhuri et al.
2014), tailoring it suitably for OWFA.

7 DISCUSSION

We will now discuss some properties of the estimator in
the context of the OWFA experiment, including limitations
posed by the instrument systematics. We will look at the
following aspects in succession:

• The estimator shows predictable spectral behaviour and
introduces no spectral anomalies.

• The chromatic primary beam and the chromatic re-
sponse function of the interferometer dominate well over the
chromaticity of the measured sky signal.

• Contribution from sources in the sidelobes manifest as
spectral signatures in the estimator.

• The error on the estimator can be derived from the
data.

7.1 Spectral behaviour

The MAPS estimator has a fully tractable spectral response.
Since it is possible to analytically derive the spectral re-
sponse of the estimator, we can ascertain through simula-
tions that the estimator introduces no unaccounted features
in the spectrum. This means that, in principle, it is possible
to model out the instrument-induced spectral features in the
estimator.

It has been shown that the angular power spectrum
Cℓ(ν) and the MAPS estimator S2(U , νi, νj) are related by
equation (24), where for our assumed sinc-squared primary
beam,

Ã(U, ν) =
λ2

bd
Λ

(

uλ

d

)

Λ

(

vλ

b

)

(30)

is the Fourier transform of the primary beam power pattern,
U = (u, v) and Λ(x) is the triangular function defined as

Λ(x) = 1− |x| for |x| < 1, and Λ(x) = 0 for |x| > 1. (31)

Given that ℓ = 2πU where U = d/λ, we may write

Cℓ ∝
(

λ

d

)γ

(32)

It then follows that for the visibility correlation of the diffuse
foreground signal alone,

S2 ∝ ν2(1−α)−γ (33)

considering all the spectral contributions, namely the in-
trinsic spectral index α, the power law index dependence
on frequency through ℓ, and the Fourier transform of the
primary beam power pattern.

Restating that the spectral response of the estimator
is fully tractable, we illustrate this for a simple case where
α = 2.32 and γ = 2.54. The S2 matrix is obtained for 1000
independent but noiseless realisations of the diffuse Galactic
foreground and the mean and the 1σ error bars of these di-
agonals are computed. The mean and the error bars are then
individually normalised at ν = 326.5 MHz; the normalised
mean and error bar curves can be represented as ‖S2(ν)‖
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Figure 8. (colour online) The MAPS estimator S2(U n, νi, νj) for a single realization of the sky, for simulated observations at δ = 0◦ for
OWFA baselines n = 1, 16 and 32 increasing from left to right panel. The diagonal in each matrix is the locus of ∆ν = 0, and any point
on the diagonal through the MAPS for the baselines stacked in sequence is a proxy for Cℓ(∆ν = 0). In addition to the shorter baselines
having more power, the longer baselines exhibit enhanced spectral structure, both in line with our understanding. See text for details

.

(a) Diffuse foreground (b) Point source foreground

Figure 9. (a) The angular power spectrum of the diffuse Galactic emission: input model shown with the solid line and the power
spectrum recovered through the estimator with points, for two random realisations. (b) The angular power spectrum of extra-galactic
point sources. In both the plots, the dashed line represents the analytical expression for the power spectra used to obtain the random
realisations, shown here only to compare the random realisations against. The results are at the frequency νc = 326.5 MHz.

and ‖∆S2(ν)‖. Figure 10 shows the normalised mean of the
diagonals as filled black circles. These have been sampled
at every tenth channel so that they are seen clearly in the
plot. The shaded region represents the bounds of the 1σ er-
ror on the mean of the foreground realisations. The curves
in red are the normalised (at 326.5 MHz) S2(ν) curves for
two different realisations. The black curve is the mean of
all the realisations and it agrees remarkably well with the

expression
(

ν
ν0

)2(1−α)−γ

. We make a few points to enable a

clear interpretation of Figure 10. Firstly, the error bounds
on the analytical curve arise from the unit variance complex
random variable (x + iy)/

√
2 in equation (14). Therefore,

it shows the standard deviation of the random realisations
and not the estimator. The standard deviation computed
from the realisations is indeed unity, which is easy to see at
νc = 326.5 MHz. In addition, the red curves show just two
of such random realisations, and there is visibly more spec-
tral structure on the longer baselines. As a result of which,

MNRAS 000, 1–16 (2017)
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Figure 10. (colour online) The normalised MAPS estimator ‖S2(U , ν)‖ is shown left to right, top to bottom, for baselines 4, 21 and
31. The red curves relate to two different realisations of the diffuse Galactic synchrotron foreground from a total of 1000. The estimated
mean is given by the filled circles and the solid black line is the analytically computed curve given by (ν/ν0)(2−2α−γ) . The simulation
is over 39 MHz split into 312 channels, but only a sampled version of the estimated mean (filled circles) is shown for clarity. The shaded
region represents the 1σ error bound on the random foreground realisations.
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Figure 11. The S2(∆ν) curves for two baselines U 2 and U 17 are
shown in the top left and right panels respectively. The residual
after fitting polynomials are shown in the bottom panels, indicat-
ing the contribution from sources in the sidelobes.

lastly, the match is not visibly exact for the longer baseline
between the analytical curve and the estimated mean data
points. A progressively larger number of realisations would
have to be averaged for the match to appear exact on the
longer baselines. In addition, the shaded bounds allow for a
comparison of these two realisations with the error on the
mean, clearly showing more variance on the longer baselines.

A source away from the phase centre leaves oscillatory
features in the MAPS estimator, and the frequency of the
oscillation depends on the location of the source m as well
on the baseline nd. It is interesting to note that ∆ν/ν0 is
of the order of 12% (∼40 MHz/327 MHz) for OWFA. The
argument can be generalised to include many point sources,
and by extension to the diffuse foregrounds as well. The
sum total contribution from all emission within the field
of view superimpose with a range of phases that tend to

partly cancel out. But residual features remain imprinted
on the innocuous-looking smooth spectra. Figure 11 shows
the S2 for the same realisation of diffuse and point source
foregrounds used to obtain the plots in Figure 8, but com-
puted as a function of ∆ν by averaging along the diagonals
of the S2 matrix for two example baselines. Although the
foregrounds are non-stationary as discussed in Section 5.2,
it is instructive to cast the estimator in the familiar form as
a function of ∆ν for this exercise. The apparently smooth
curves in the top panels can be fitted by low-order poly-
nomials successively. The residual contamination can still
be seen in the bottom panels. The frequency of the oscil-
latory pattern is higher as expected for longer baselines. It
must be noted that the amplitude of the residual oscillatory
features is about 7 orders smaller than the visibility corre-
lation S2. These features are still about 1-2 orders above
the amplitude of the expected H i visibility correlation (see
Ali & Bharadwaj 2014; Chatterjee et al. 2017). At this level,
these dominant residual features preclude detecting the H i

signal in the ∆ν space.
These undesirable oscillatory features can be suppressed

by restricting the total FoV. This can be achieved by taper-
ing the primary beam with a weighting function, typically
a Gaussian window function. However, this is possible only
in the uv-plane post-correlation, through a 2D convolution.
Beam tapering in uv has been shown to be quite effective for
the GMRT (Ghosh et al. 2011b). The tapered-gridded esti-
mator has been shown to be equally effective for simulated
GMRT data (Choudhuri et al. 2014, 2016a).

The function S2(U, ν1 − ν2) behaves smoothly away
from and normal to the principal diagonal. Since this cut
normal to the diagonal represents S2(U,∆ν), the MAPS es-
timator matrix S2 naturally encodes the decorrelation of the
foreground as well as the sky signal.

7.2 Sources in the sidelobes and instrument

chromaticity

The effects of sources at large angular distances from the
pointing centre coupling in through the primary beam is

MNRAS 000, 1–16 (2017)



14 Marthi et al.

Figure 12. (colour online) The estimator S2(ν) for different values of α and γ are shown here for the longest baseline |U | = 475.0.
Each plot has three curves; one each for α = 0.0, 1.0, 2.0, shown by the colours blue, red and purple respectively. The values have been
normalised to S2(ν) at ν = 326.5 MHz. The normlized curves look very similar between widely different values for α and γ, implying that
these estimates are dominated not by α and γ, but by the instrument response. The dashed lines mark νc = 326.5 MHz and ||S2(νc)|| = 1.

well-known (see e.g. Datta et al. 2010; Vedantham et al.
2012; Pober et al. 2013b; Thyagarajan et al. 2015a,b;
Pober et al. 2016). Consider a single point source at the co-
ordinates θ = (l,m). Let us also assume that the pointing
of observation is (α0 = 0, δ0 = 0) without loss of general-
ity. For the nth baseline in the linear array, we note that at
frequency ν = c/λ,

U n = nU 1 = n
d

λ
= n

d

λ0

λ0

λ
(34)

The visibility, obtained as a Fourier sum in the simulation
and given in equation 10, simplifies to

M (U , ν) =
∑

θ

I(θ, ν) A(θ, ν) e
−i2πmnd

λ0

λ0

λ (35)

Since V(U , ν) represents an estimate of M (U ), the two-
visibility correlation at (νi, νj) for this baseline becomes

S2(U n, νi, νj) ∼ |I(θ, ν0)|2 |A(θ, ν0)|2 e
−i2πm

(

nd
λ0

)

(

νi−νj
ν0

)

(36)

assuming that the approximations

|I(θ, ν0)|2 = I(θ, νi)I
∗(θ, νj) (37)

and

|A(θ, ν0)|2 = A(θ, νi)A
∗(θ, νj) (38)

are reasonable, but in general not strictly true.
The intrinsic frequency dependence of the sky signal

can be disentangled from the chromatic instrument response
by varying α and γ over a range of values. We observe the
resulting spectral behaviour S2 for a single Gaussian realiza-
tion of the diffuse foreground. Figure 12 shows S2(∆ν = 0)
normalised to its value at ν = 326.5 MHz, for the longest
baseline, where α is allowed to take three different values:
0.0, 1.0 and 2.0 (the three curves in each panel) for each
γ = 0, 1, 2. The spatial index γ exerts a spectral dependence
through ν−γ , and the spectral index α through ν2(α−2).
Therefore for γ = 0 and α = 2 (spectral index in tem-
perature units), all the spectral behaviour that manifests

in the curve is indeed being caused by (a) the baselines U

changing with frequency and (b) the primary beam shrink-
ing with increasing frequency. The strikingly similar curves
for different values of α and γ point to their effect being
sub-dominant. Therefore, the bulk of the spectral trend of
S2 in a single foreground realisation comes from the chro-
matic response of the instrument(see also Vedantham et al.
2012; Thyagarajan et al. 2013).

7.3 Error on the estimator

Having studied the visibility correlation estimator through
noise-free simulations, we could now turn our attention to
the effects of noise. The estimator S2 has the dimensions of
variance. For the error on S2 we are hence interested in the
variance of the variance. In the simulations described above,
the visibility correlation matrix S2 is computed at every one-
second interval. For an N-second observation, therefore, N
such matrices are available for each baseline, from which the
mean matrix and the RMS matrix for each baseline can be
computed.

The estimator S2 and the error matrix ∆S2 are com-
puted now for a single realisation of the Galactic dif-
fuse foreground, with the system temperature of 150 K
(Selvanayagam et al. 1993) and a 60-second observation.
This is equivalent to deriving the error bars from as many
independent realisations (60) of the noise, given a single
realisation of the foreground. Figure 13 shows the recov-
ered power spectrum by sampling through the mean and
RMS cubes, S2 and ∆S2, at the same (νi, νj) co-ordinates:
the power spectrum is obtained from the mean S2 matrix
and the error bars from the RMS ∆S2 matrix. Figure 13(a)
shows the “self” power spectrum with the error bars where
νi = νj =326.44 MHz, and Figure 13(b) shows the “cross”
power spectrum with error bars, at νi =342.19 MHz and
νj =326.94 MHz. The dashed straight line through the plots
is not a fit, but it is the input analytical power spectrum
used for simulating the diffuse Galactic foreground. The U

values on the x-axis are computed at the central frequency
326.5 MHz, as there is no other meaningful way to represent
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(a) Self-power spectrum (b) Cross-power spectrum

Figure 13. The panels (a) and (b) respectively show the “self-power spectrum” and “cross-power spectrum” at different values of
(νi, νj) by sampling through the S2 cube. The error bars, drawn from the same co-ordinates of the RMS cube, correspond to 60 seconds
of integration with a system temperature of Tsys = 150 K. The dashed straight line is the input angular power spectrum of the Galactic
diffuse synchrotron foreground. The scatter in the estimated power spectrum is due to the stochastic nature of a single realization of the
foreground.

U at a pair of frequencies (νi, νj) at which these spectra
have been extracted. Figure 13 is an important result purely
from the perspective of foregrounds: a 60-second integration
has resulted in a 10σ detection of the diffuse Galactic fore-
grounds, under the implicit assumption that the point source
foregrounds have been modelled out, or are sub-dominant as
would be the case for the short baselines of OWFA. This is a
very optimistic scenario if we are interested in the statistics
of the diffuse foregrounds.

8 SUMMARY

In this paper we have briefly described the upcoming Ooty
Wide Field Array interferometer, one of whose goals is to
detect the large scale structure in redshifted 21-cm emission
from z ∼ 3.35. A detailed simulation of the instrument and
the foregrounds has been carried out. The simulations incor-
porate a fully chromatic instrument model and hence lead
to conservative estimates for the expected systematics. We
have recast the visibility correlation estimator, previously
applied to GMRT observations, for OWFA. We find that
the foregrounds manifest with very smooth spectra in the
estimator, and that fitting them out with polynomials still
leaves systematic residuals that are 1-2 orders stronger than
the cosmological signal. Besides, the chromatic response of
the instrument gives rise to dominant spectral features in the
bandpass of the baselines. The short baselines make OWFA
a sensitive instrument for rapidly characterising the diffuse
foregrounds. In a future paper, we will address further sup-
pression of the foreground residuals.
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